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Abstract-The effect of buoyancy forces on the boundary-layer flow over a semi-infinite vertical flat 
plate is investigated. The buoyancy forces are favourable, resulting from a uniform flux of heat from 
the surface of the plate, and their interaction with the boundary-layer flow associated with a uniform 
stream is examined. Two series solutions are obtained, one valid near the leading edge and the other 
downstream. An accurate numerical method is used to describe the flow in the region where the series 
are not valid. Comparison of results leads to some confidence in the merit of the series solutions for 

Prandtl number of O(1). 

NOMENCLATURE Greek symbols 

4 velocity of sound; 

5 non-dimensional stream function near 
leading edge; 

fi(i = 0, 1,2), series components off; 

J? non-dimensional stream function 
downstream; 

fi(i = 0, 1,2), series components off; 

complementary function downstream; 
acceleration due to gravity; 

Gr, Grashof number, F ; 

el, 
k, 

complementary function downstream; 
thermal conductivity; 

Nusselt number x. 
‘kAT’ 

Q> heat-transfer coefficient; 

Re, Reynolds number, e ; 
V 

T, 
T 01 
T 
A?, 

u, 0, 

u, 
X, 

Y, 

temperature; 
temperature of ambient fluid; 
local temperature at the plate;’ 

K-T,; 
velocity components along and normal to the THIS paper examines an idealisation of a flow situation 
plate; 
uniform stream velocity; 

which often occurs in practice, namely the fluid flow 

distance along the plate; 
over a surface from which heat is dissipated almost 
uniformly. The precise model to be examined is 

distance normal to the plate. described as follows. 

743 

P, coefficient of thermal expansion; 

6 2, momentum thickness; 

6 
0” 

temperature thickness; 
non-dimensional temperature near leading 

edge ; 
Oi(i = 0, 1,2), series components of 8; 

0, non-dimensional temperature downstream; 

B,(i = 0, 1,2), series components of 8; 

K, 

P3 

V, 

thermometric conductivity; 

an undetermined constant; 
kinematic viscosity; 

Prandtl number, 1; 
K 

skin friction coefficient; 
non-dimensional coordinate along the plate; 
non-dimensional coordinate normal to the 
plate near the leading edge; 
non-dimensional coordinate normal to the 
plate downstream; 

stream function. 

1. INTRODUCTION 
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A uniform stream flows over a semi-infinite vertical 
flat plate, whichisfixed with its leading edge horizontal. 
As a result of a uniform surface heat flux at the plate, 
heat is supplied to the Row by diffusion and convection. 
This heating gives rise to buoyant body forces which 
accelerate the Buid in the boundary layer at the plate 
thus acting as a favourable pressure gradient. Near the 
leading edge the boundary layer is formed chiefly by 
the viscous retardation of the free stream whereas far 
downstream theflow behaviour in the layer is governed 
by the buoyancy forces. 

The problem is formulated in terms of a characteristic 
non-dimensionalcoordinate 5 which measures the local 
relative magnitude of viscous and buoyancy forces. 
Once t is estabbshed two series expansion sofutions, 
valid in different regions are obtained. To obtain each 
such series solution a transformation is applied to the 
governing boundary-layer equations. The nature of the 
transformation is dictated by the anticipation that 
near the leading edge the buoyancy forces simply 
provide a modification to a basically forced convection 
flow whereas downstream the presence of the free 
stream is considered as a perturbation on the free 
convection solution. The asymptotic expansion down- 
stream must be approached with caution in the light 
of a fundamental difficulty outlined by Stewartson [I] 
and exemplified by Merkin [Z] whilst discussing a 
previous perturbed free convection solution given by 
Szewczyk [3]. it is not expected that the regions of 
validity of the series solutions will overlap. These 
solutions are therefore supplemented by an accurate 
numerical solution of the problem. The numerical 
method is an adaptation of a method used by Terrill 
[4] and Merkin [2] which starts with velocity and 
temperature profiles at the leading edge and proceeds. 
step-by-step, to calculate profiles downstream. 

Although the methods given in this paper are general 
ones results are only presented for the case when the 
Prandtl number r~ - 1. This reflects the time and 
expense required to perform one fuI1 numerical solu- 
tion. Besides providing precise information for this 
case. an objective of the work must therefore be to 
provide an opportunity of assessing the merits of the 
series solutions which can be obtained relatively 
speedily and economically. 
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2. TNE PROBLEM 

The situation under discussion is illustrated in Fig. 1. 
In a Cartesian coordinate system a semi-infinite plate 
occupies the region y = 0, x > 0 so that x measures 
distance along the plate from a fixed horizontal leading 
edge x = 0 and y is measured normally outwards from 
the plate. Incident upon the plate and in the direction 
of increasing s is an isothermal uniform stream of 

u I I 
FIG. 1 

velocity U and tem~rature To. Favourable buoyancy 
forces arise as a result of a uniform surface heat flux 4 
from the plate. 

If it is assumed that 

U= AT --. 
a2 0 K r GI l 

heating due to viscous dissipation can be neglected 
and the fluid considered incompressible, so that 
changes in density are significant only in producing 
buoyancy forces. v and K can then be taken as constant 
and the governing boundary-gayer equations expressing 
conservation of mass, momentum and energy, become 

Equations (l)-(3) are to be solved subject to the 
boundary conditions 

u = t? = 0, 
dT -c-f on y=O 

aY 

u -+ u, T-T, as y-+co 

u = u, T = To at x = 0. 
(4) 

A dimensional analysis of equations (l)-(3) is instru- 
menta1 in obtaining as non-~mensjona1 characte~stic 
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length scale 

which reflects the local relative importance of viscous 
and buoyancy forces. The numerical factors are intro- 
duced for convenience. Transformations associated 
with flow near the leading edge and downstream lead 

to series expansion solutions in terms of t3/’ and 

5- 3’5 respectively. The unifying role of the coordinate 

5 is particularly in evidence in the numerical solution 
when, at 5 = 1, profiles of velocity and temperature, 

obtained from an integration of the leading edge form 
of governing equations, are used as initial profiles for 
the integration of the asymptotic form of these same 
equations. 

3. NEAR THE LEADING EDGE-SMALL l 

In this vicinity there is little opportunity for heat 
from the plate to be taken into the fluid, and the 
boundary layer is formed mainly by the retardation of 
the free stream U by viscosity. This suggests the follow- 

ing transformations 

$ = (2vux)“*f(4, PI) 

where + is the stream function, 

u ( > 
112 

rl=y j-& 

and < is as in (5) above. 
The boundary-layer equations become 

with boundary conditions 

f+o; + 1 on q=O 

y -*I 
(8) 

g ; 
O-+0 as q--+m. 

Solution of equations (6) and (7) are sought by 
expanding f and 0 in series in t3’* in the form 

f(5, I?) = f&) + t3’%(1) + t3f2(1) f. 

a> 7) = &l(1) + 53’201(d + 53o2(v) + t ” 

which, when substituted in equations (6) and (7) and 

equating powers of t3’*, yield 

O(l) f;l+“frJ: = 0 

o(t3’2) f;“+f~f~so44ff~-3f~f;-5Bo = 0 
I P) 
~o;+O'lfo+4flf&-fJof;-4f~lf~ =0 
0 

o(t3) f;“+f;f~+7f2fd’-6f;fz’-sol 
= 3f;*-4flf;’ 

b~~+H;/o+71;o6f;oo7a,id 
= 4fl,f;-4o;f, 

with boundary conditions 

lo(O) = fl(0) = f*(O) = *. . = 0 
fJ0) = f;(o) = f;(o) = . . = 0 

l&(O) = 1; e;(O)=s;(O)=...=O (10) 

A(~) = 1; f;(m)= f;(m)= . . . =o 

O,(m) = 0,(m) = 02(m) = = 0. 

The forced convection nature of the flow in this region 

is apparent in the O(1) system of equations for f$ 0,. 
Here fd is clearly the Blasius solution for isothermal 

incompressible viscous flow past a flat plate. The overall 
system of equations (9) is not amenable to analytic 

solution and solutions to these two-point boundary 
value problems must be obtained numerically. Solution 
is accomplished once values off,“(O), ei(0) (i = 0, 1,2,. .) 
are established which enable boundary conditions at 
infinity to be satisfied when the equations are integrated 
outwards from r) = 0. Such solutions are readily ob- 

tained and are presented in the results. 

4. DOWNSTREAM-LARGE 5 

Away from the leading edge buoyancy forces become 
increasingly important until far downstream the flow 

will be predominantly one of free convection perturbed 

by the presence of the free stream. In view of the 
solution of Sparrow and Gregg [s] for the purely free 
convection flow under the constant heat flux specifica- 
tion the following transformations are invoked 

ti = c,xJ’53(5, 4 

where 

and 
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The boundary-layer equations (2) and (3) become 

with boundary conditions 

p$o; FO 

3=’ On q=” 
Q r-3:5. 

(13) 

?ij 5b ’ 
B-0 as f+co, 

The perturbation nature of the free stream presence 

is revealed in the behaviour of @‘/aa as q -+ co. To 
accommodate this boundary condition series solutions 

of (11) and (12) are sought in the form 

.fcr, vl) = .f,($ + 5-3’5.~I($ + r6’722(rl) + 

8(<,,-)= 8,(ii)+5-3’5~~(~)+5-6’5R*(~)+... 

These expansions lead to the following system of 

equations 

O(1) ,fd” + SfJd’ - 6&.fd’ - n, = 0 

to be solved subject to boundary conditions 

30(0)=3~(~)=32(~)=~~~=~ 
36(O) = 3;(o) = 3;(o) = = 0 
c&(0)=1; R;(o)=iig(o)=...=o (15) 

3;(m) = 0; .3Jco) = 4; f;(m) = 0; 
O,(m) = (s,(cc). . = 0. 

O(1) solutions of (14) coincide with those of Sparrow 
and Gregg [5] and describe the flow about a semi- 
infinite flat plate at whose surface the heat flux is 
constant. 

In establishing the correct form for the series 
expansion of ,f and 0 account must be taken of those 
complementary functions which identically satisfy the 
boundary conditions at zero and infinity and which 
are exponentially small when a is large. A combination 

of them can be added to the solution which will still 
satisfy all the conditions imposed. It has been shown 

by Stewartson [l] that the numerical constant multi- 
plying each such complementary function must in some 
way be associated with the conditions satisfied by the 
stream function upstream. Moreover, if as often 

happens, such a complementary function occurs at a 
stage for which a particular integral is required then 
the condition of exponential decay cannot be fulfilled 
unless an additional term, consisting of the comple- 
mentary function multiplied by a log or log-log term, 

depending on the case, is added. The numerical factor 

in this term is to be determined by the condition that 
the particular integral be exponentially small when q 
is large. 

The occurrence of such complementary functions 
can be investigated as follows. Setting 

and substituting in equations (11) and (12) reduces the 

problem to that of ascertaining those values of n for 
which the system of equations 

! I?; + 83JI; + (lon-2),f;R” 
0 _- 

+(8-10n)BbF”-221)oF; = 0 (17) 

has a non-trivial solution subject to the boundary 

condition 

F”(0) = F;(o) = 0; Hi(O) = 0 

Fn( co) = 0; R”(E) = 0 

where the decay of Fi, Fi, as q + cx) is to be exponential 
and f&j), g,J$ are the O(1) solutions of (14). 

A full investigation of this problem is beyond the 

scope of this paper although Stewartson’s [6] com- 
ments on leading edge shift lead us to suspect a 
solution for n = + 1. In fact a solution of (16) and (17) 
which satisfies the boundary conditions proves to be 

where p is as yet an undetermined constant. Since ex- 
pansion solutions in powers of (c-3’5) have been 
assumed the above eigenvalue solution is not in fact 
the solution of the homogeneous part of any of the 
systems of equations in (14). Consequently the intro- 
duction of a log term in respect of this complementary 
function solution is not appropriate. Although the 
solution has no part to play in ensuring the exponential 
decay of a particular integral it remains true that 
arbitrary multiplies of it could be added to the full 



Flow over a semi-infinite vertical flat plate 

solution without contravening the boundary conditions 

other than perhaps upstream. In general such contribu- 

tion to the asymptotic solution remains arbitrary 

although associated with some overall property of the 
flow. Estimates of such contributions can be made by 
comparing the asymptotic solution with a precise 
numerical solution and indeed at first sight this would 
seem to be the opportunity afforded by this investi- 
gation. However in this particular case the precise 

- - 
contribution of the complementary function F, H can 
be demonstrated to be identically zero, i.e. p = 0. The 
integrated form of the energy equation yields 

141 

5. NUMERICAL SOLUTION 

A step-by-step method of numerical solution was 

employed whose accuracy is limited only by the time 

and space required to perform the calculations on the 

computer. Derivatives in the <-direction are replaced 
by differences and all other quantities by averages. 
The method then establishes, by an iterative scheme, 

velocity and temperature profiles at a station t2, down- 
stream of the station <i, at which profiles are known. 
For starting the solution, the transformed equations 

(6) and (7) are appropriate and initial profiles are taken 
as those similarity solutions of the reduced form of 
equations (6) and (7) i.e. f& Oo. Since the iteration 

process fails to converge at 5 = 0 the integration is 

initiated at [i = 5 x 10e6 with an initial step length 
of 5 x 10m6. Subsequent step lengths are duly enlarged 
when the maximum number of iterations needed in 

going from <i to t2 is less than four. Downstream 
the transformed equations (11) and (12) are appropriate. 
The changeover is most conveniently invoked at 5 = 1, 

where q = q. Thus profiles of temperature and velocity 

obtained from the integration of the transformed 
equations (6) and (7) at 5 = 1 are used as initial profiles 
for the integration, commencing at < = 1, of equations 

(11) and (12). 

i.e. 

$[j,,u,,,]=ti;. 

(19) 

In terms of ,f, 0, { and 6 this reduces to 

If, at this stage, a contribution to the asymptotic 

solution is assumed and expansions for f, g read 

.f(L ii) = .fo(G) + 5- 3’5fr(ri) + 5- iFi(ri) + ‘. 

8(&q)= eo(?)+--3’5~~1(4)+5-1171()1)+... 

the implications of (20) are that 

O(1) 3o - 
s 

0,f,dq = -A (21) 
0 

0(5-3/y s m (&~;++o.fWi = 0 (24 
0 

q-1) s m - -I (O,F,+f7&)d~ = 0. (23) 
0 

Introducing the representation (18) into (23) we have 

=5p m,&Rodti=O 
s 0 

which, in view of (21), implies p z 0. 
It is concluded that the solution of the systems of 

equations (14) are therefore appropriate and numerical 
solutions of these two-point boundary value problems 
have been obtained. Details appear in the results. 

Errors arise from using finite differences in both the 

5 and q-directions. The size of truncation errors in the 
q-direction can be checked using finite difference 

estimates whilst errors in the <-direction are controlled 

by prescribing a maximum modulus of deviation 
between a one-step and a two-step solution between 
stations t1 and c2. Profiles obtained from integrating 
at the half intervals are the ones used as initial profiles 

for the next full step of the solution. The level of 
accuracy.achieved is governed solely by the limitations 

on available storage space. In this instance integrations 
in the q-direction were carried out with 

4, a = 0.1(0.1)6.4 

and a maximum modulus of deviation of 5 x 10e5. 

An overall accuracy of at least three decimal places is 
therefore anticipated. 

RESULTS (a = 1) 

Series solutions 

Numerical solution of equation (9) subject to bound- 

ary conditions (10) have been established and appro- 
priate initial values are presented in Table 1. 

Table 1 

A” Oi 
- 

i=O 0.46960 - 1.54064 
i=l 5.14956 2.68850 
i=2 - 19.23852 - 20.89185 
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FIG. 2. Velocity functions near the leading edge. 

0.6 

0‘4 

0.2 

0 2 3 4 

77 

FIG. 3. Temperature functions near the leading edge. 

Velocity and temperature profiles associated with 
the solutions are illustrated in Figs. 2 and 3. We are 
now able to calculate, in terms of the series expansions, 
the values of various flow parameters near the leading 
edge, namely 

(i) the skin ftiction coefEcient 

(ii) the heat-transfer coefficient 

(iii) the momentum thickness 

(iv) the temperature thickness 

In terms of the Ieading edge variables and solutions 
associated with Table 1 we have 

Gv-*‘* e = 

(fl),=, 
= (25)- “:2(1.54064- 2-6&85@3!" 

~20.89185~~ -I- . . .)-I (29) 

6, = (25y [; $[I -;),, 

I= (2~)‘j’~O.46960- 0,58631{“‘2 
+ 0.74780{3 +. . .; (30) 

&. = (25)‘!2 
s 

‘x. zi 0 _ _“_- -- dq 
0 C’Y U+),=fl 

= (25’)““(0.32456 + 0.56524<= 
-O-9274?{3+...; (31) 

where ~u~er-Maciau~~ formulae have been used in 
evaluating integrals appearing in & and ST. 

Numerical solutions of equations (14) subject to 
boundary conditions (15) have also been obtained and 
appropriate initial values appear in Table 2. 

Table 2 

f,” rs 
i=O 0.54715 - 1.18168 
i=l -0.01742 o-13634 
i=2 002486 O-00995 
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2- “24- 1’5 
Q= - (D),=, 

FIG. 4. Velocity functions downstream. 

FIG. 5. Temperature functions downstream. 

Again velocity and temperature profits associated 
with these solutions have been illustrated and appear 
in Figs. 4 and 5. From the series expansions the values 
of the flow parameters in terms of the downstream 
variables and the solutions associated with Table 2 yield 

32 & = 5 x 2-WeW _ 
(3 a$ Ii=0 

= 5 x 2-“2~2’5(O~54715-@01742~-3’5 

= 2-“2~-1~5(1.18168-0.136345-3~5 

-0~009955’-6’5+...)-1 (33) 

= 21’252~“~5(-0~02751 +0.020515-3’s 

+ 0~010084-6~5 + . . .) (34) 

6, = 21/2554/s s 
= 21’z5~4’s(O~08463 + 0@0977~- 3’5 

- oGH775-6’5 + . . .). (35) 

Series expansion estimates of the flow parameters 
have been calculated from (36) to (43) and are included 
as the dotted line plots in Figs. 6-9. 

E 

FIG. 6. Skin friction coefficient. -----series 
solutions; -numerical solutions. 

JO- 

Q 

0-i I I I 
501 0.1 r IO 

E 

FIG. 7. Heat-transfer coefficient. ----series solutions; 
. . . . +@02486<+“*+...) (32) -numerical solutions. 

)O 
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100 

IO- 

16, I 

/- 

01 001 01 IO 10 100 

FIG. 8. Momentum thickness. -----series solutions; 
__ numerical solutions. 

I 
” 2 3 -4 

E 

FIG. IO. Velocity profiles from numerical solution. 

Numerical solution 
Results of the full numerical integration of the 

boundary-layer equations are presented in Tables 3 
and 4 in floating point notation. The Tables deal 
respectively with the two distinct regimes of integration 
0 < t < 1 and 1 < 5 c cc and list values of the various 
flow parameters (32)-(38). These results are represented 
as full line plots in Figs. 6-9. Additional illustrative 
information is presented in Figs. 10 and 11 where 
velocity profiles at various stations along the plate are 

graphed. 

Fro. 9. Temperature thickness. -----series solutions; 
-numerical solutions. 

FIG. 1 Velocity profiles from numerical solution. 

DISCUSSION 

A detailed investigation of the title problem has 
been outlined and it remains to note the high degree 
of agreement between the three-term series representa- 
tions and the exact numerical solutions for Prandtl 
number unity as illustrated in Figs. 6-9. In all the 
cases of skin friction, heat transfer, momentum thick- 
ness and temperature thickness, estimates overlap over 
almost the whole range of values of 5. Moreover the 
points at which series representations diverge from the 
correct solutions are such as to give some confidence 
that straightforward extrapolations linking these series 
representations may well be sufficient for practical 
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Table 3 

751 

0~00001 1.05oci2 
0~00004 5.251~1 
O.~Ot6 2~626~x1 
0.00064 1,313al 
0.00256 6Cj73aO 
0.01024 3.319x0 
0.02 2.419uo 
0.03 2.023~0 
004 1~800~0 
0.05 1~658aO 
0.06 lci60~0 
0.07 1.491ro 
0.08 1.44120 
0.09 1,403ao 
0.10 1.375cto 
0.12 1,339uo 
0.14 1.32OarO 
0.16 I-313x0 
O-18 1.312cto 
0.20 1.3 17cto 
0.24 1.337cio 
0.28 1.364~0 
0.32 1.395&O 
0.36 1.428~~0 
0.40 1.462aO 
048 t~531uo 
0.56 1~598ciO 
0.64 1.664~0 
0,72 1.72X%0 
O%O 1~788!xO 
0.88 1.847~0 
0.96 1.903Gto 
1QO 1,931ao 

1.450~2 
7.254~1 
3.627~1 
lG313at 
9.069~0 
4.54120 
3.260aO 
2672x0 
2.324~0 
2,089aO 
1*917ao 
1‘784czO 
1678aO 
1.591aO 
1~519RO 
I .402x0 
1.314ao 
1.243~0 
i.t85aO 
1.137ao 
1~060ao 
1~002~0 
9+j51c(-l 
9.169a- 1 
8.847c( - 1 
8.335a - 1 
7939a - 1 
x21a-- 1 
7.3% - I 
71353- 1 
6.946~ - I 
6716c? - 1 
66990( - 1 

2.1ooc(--3 
4.19701-3 
8.3932-3 
167&x - 2 
3.35Sr-2 
6.10% - 2 
+35oct-2 
1,142c(- 1 
1.314a- 1 
1.4632 - 1 
1596a- 1 
1~716cc- 1 
1%25cr- 1 
1~925r- 1 
2.018x- 1 
2.184x- 1 
2.329a - 1 
2,45501- 1 
2-56&z - 1 
2663~ - 1 
2.8222 - 1 
2.939~ - 1 
3,02la- 1 
3.072a - 1 
3.095% - 1 
3.067~ - 1 
2.953a- 1 
2.762a - 1 
2L504c( - 1 
2.183ci- 1 
1.807a - 1 
1.377u - 1 
1.1440- 1 

1.450a - 3 
2.9Oia-3 
5801a - 3 
1~160cl--2 
2.3212-2 
4649a - 2 
6517r-2 
8.012a-2 
9.293a-2 
1.044a - 1 
1~15Off - 1 
1,249ff - 1 
1.342~ - 1 
1.432~ - 1 
1.518c(- 1 
l,683a- 1 
1,839a - 1 
1.989a - 1 
2.1&Z-l 
2,274ct - 1 
2.545~~ - I 
2.806% - 1 
3.057% - 1 
3.302~ - 1 
3.541xX- 1 
4@03cr - 1 
4450x- 1 
4+83a-- 1 
5.304cr - 1 
5.716x- 1 
6120a- 1 
6~516cx- 1 
6711%-l 

Table 4 

5 62 ST 

I.0 1.931aO 
1-2 2.107crO 
1.5 2.29lczO 
2.0 2.559ctO 
3.0 3~ooOao 
4.0 3.364010 
5.0 3.677~0 

100 4c357ao 
15.0 5.717ao 
200 6.4%x0 
270 7.241ctO 
36.0 8,12&O 
48.0 9.123~0 
68-O 1+049al 

IWO 1~22Sd 
1.500 1445al 
2500 1.768al 
450.0 2238d 
8000 2.818&l 

15000 3.624~1 
Series 3.604al 

6.693a - 1 
6.376ct - 1 
6@14a- 1. 
5593x- 1 
507oa - 1 
4.741cl- 1 
4,506~ - 1 
3.867~~ - 1 
3.5450: - 1 
3.336~ - 1 
3.133ff - 1 
2951c(- 1 
2.780~ - 1 
2*589a- 1 
2+332a - 1 
2.203~~ - t 
1*98661- 1 
l-76401 - 1 
1.571ff - 1 
1.38% - 1 
1.38&x - 1 

1*144a- i 
-19oOa-2 
-2*668a- 1 
- 7.859~ - 1 
-2.140~~0 
- 3+327aO 
- 5.786~0 
- 1.863~11 
- 3~523ctl 
-5~47ocd 
-8588x1 
- 1.316~2 
- 2.007~2 
- 3.329~2 
- 5+806a2 
- 1~038or3 
-2.148ff3 
- 4.939u3 
-1.113ff4 
- 2.696~4 
- 2.694a4 

~. ._~ 

6711a-1 
7667a - 1 
9.041a- 1 
1.121ao 
152SaO 
1902ao 
2.259~0 
3%7&x0 
5333a0 
6,691aO 
8~483ctO 
1.066ctl 
1.339al 
1.76&x1 
2,400ai 
3.315a1 
4.982~1 
7.964rrl 
1.261~~2 
2.0840~2 
2.082a2 
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0 I. I I I I I 
001 01 IO IO 100 1000 

E 

FIG. 12. 

purposes. Also noteworthy is the level of agreement 

between a local similarity analysis and the results of I. 
this investigation. In [7] a local similarity analysis 
was examined and estimates for local Nusselt number 2. 

Nu, 1 

4. 

presented. where * refers to the variables of that paper. 
In Fig. 12 the equivalent exact quantity has been plotted 
and it is impossible to differentiate graphically the ” 

discrepancies between the results of this work and the 

earlier results over the appropriate range of <. This is 6. 
an interesting result and further investigations of the 
correlation between local similarity, series and exact 

estimates for more extreme values of Prandtl number 

,, 

may be profitable. 
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ECOULEMENT LIBRE UNIFORME SUR UNE PLAQUE PLANE VERTICALE 
SEMI-INFINIE AVEC FLUX THERMIQUE PARIETAL UNIFORME 

R&sum&On ttudie I’effet des forces d’Archimide sur l’&coulement de couche limite contre une plaque 
plane verticale semi-infinie. Ces forces sont favorables dans le cas d’un flux par&al uniforme de chaleur 
et on examine leur inttraction avec I’&coulement de couche limite. Deux solutions skries sent obtenues, 
I‘une valable pr?s du bord d’attaque et l’autre en aval. Une mCthode numCrique prkcise permet de 
decrire I’tcoulement lorsque les skries ne sont pas acceptables. La comparaison des rtsultats conduit B une 

certaine confiance en faveur des solutions stries pour un nombre de Prandtl de l’ordre de I’unitC. 

DIE STETIGE STROMUNG ENTLANG EINER HALBUNENDLICHEN, SENKRECHTEN. 
EBENEN PLATTE MIT GLEICHFORMIGEM WjliRMESTROM DURCH DIE OBERFLACHE 

Zusammenfassung-Untersucht wird der Einflun von AuAriebskrlAen auf die Grenzschichtstrsmung an 
einer senkrechten, ebenen Platte. Die von einem gleichmPl3igen Wlrmestrom aus der PlattenobertIlche 
verursachten Auftriebskrgfte beeinflussen den WPrmeiibertragungsvorgang giinstig. Ihre Wechselwirkung 
mit der Grenzschicht einer stetigen Strijmung wird behandelt. Es werden zwei Liisungen in Reihen- 
darstellung angegeben. Von diesen gilt eine nahe der AnstrGmkante und die andere stromabwlrts. Eine 
genaue numerische Methode wird dort angewandt, wo die ReihenlGsungen nicht gelten. Ein Vergleich der 

Ergebnisse berechtigt zu einigem Vertrauen zu den ReihenlGsungen fir Pr = I. 
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Of, O~HO~AHO~ I’IOTOKE HAJJ ~O~Y~ECKOHE~HO~ BE~~~~bHO~ 
IIJIACl%HO2;1 I-IPH HAJIHYBH PABHOMEPHOrO TEl-IJIOBOl-0 I’IOTOKA 

HA IIOBEPXHOCTH 
ktlOTB~HR--&kCJIeA’,‘eTCX BJIliRHUe CUAbI ApxHMeAa Ha TeWHlCle B tTOrpaHH’iHOM CJ-tOe B6Jtki3EI 
nony6ecKoHemoP BepTUKWIbHOti IIAaCTHHbl. ApXPiMeAOBbI CWJIbl, B03HWICaMIIIHe B pe3yJIbTaTe 

npunoxeceanoro x nnacTuHe oAHo~OAH~~~ TermoBoro rroToKa, IIB~BI~Tc~ 3HawiremabrM~; u3yqaeTc5i 

BO3ACkTBMe 3TUX CHJI Ha 0,ZiHOpOAHOt XCWAKOCTII. nOJryreHb1 pf%XeHKK B BUAe PRAOB ASIR lXpeAHe~ 

KPOMKU H AJIII o6AacTu BHEi3 II0 rIOTOICy. &IS Or%iMHHx nOTOKa B o6nacTa, rAe IIOAyYeHHbIe ~JJIeIiH5l 

He S?BJWK)TCII COp~eAA~BbIM~, llClIOS3yeTCSJ TO’iHbl& ~~C~eHHbl~ MeTOA. HpOBeAeHfiOe CpaBHeHRe 

llOKa3bIBaeT AOCTOBepHOCTb I’IOny’leHHbIX pe!J.IeHIifi B BAAe plI,lIOB AJI5I W%CJIa nQaHnTJIx o(I). 

HMT Vol. 17. No. 7-D 


