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Abstract—The effect of buoyancy forces on the boundary-layer flow over a semi-infinite vertical flat
plate is investigated. The buoyancy forces are favourable, resulting from a uniform flux of heat from
the surface of the plate, and their interaction with the boundary-layer flow associated with a uniform
stream is examined. Two series solutions are obtained, one valid near the leading edge and the other
downstream. An accurate numerical method is used to describe the flow in the region where the series
are not valid. Comparison of results leads to some confidence in the merit of the series solutions for

Prandt]l number of O(1).

NOMENCLATURE
a, velocity of sound;
£ non-dimensional stream function near
leading edge;
fii=0,1,2), series components of f;
1, non-dimensional stream function
downstream;

fii=0,1,2), series components of f;
F,,  complementary function downstream;
g, acceleration due to gravity;
AT

Gr,  Grashof number, @T R

v
H,, complementary function downstream;
ka

thermal conductivity;

Nu,  Nusselt number, ax ;
kAT

Q, heat-transfer coefficient;

Ux
Re,  Reynolds number, — ;
v
T, temperature;
T,, temperature of ambient fluid;
T,, local temperature at the plate;
AT, T,-T,;

u,v, velocity components along and normal to the

plate;
U, uniform stream velocity;
X, distance along the plate;
Vs distance normal to the plate.
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Greek symbols

B, coefficient of thermal expansion;

Oa, momentum thickness;

dr, temperature thickness;

0, non-dimensional temperature near leading
edge;

8,1 =0,1,2), series components of §;

8, non-dimensional temperature downstream;

0:(i =0,1,2), series components of J;

K, thermometric conductivity;

i, an undetermined constant;

v, kinematic viscosity;

v

o, Prandtl number, p ;

Tros skin friction coefficient;

£, non-dimensional coordinate along the plate;

1, non-dimensional coordinate normal to the
plate near the leading edge;

#, non-dimensional coordinate normal to the
plate downstream;

W, stream function.

1. INTRODUCTION

THIS paper examines an idealisation of a flow situation
which often occurs in practice, namely the fluid flow
over a surface from which heat is dissipated almost
uniformly. The precise model to be examined is

described as follows.
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A uniform stream flows over a semi-infinite vertical
flat plate, which is fixed with its leading edge horizontal.
As a result of a uniform surface heat flux at the plate,
heat is supplied to the flow by diffusion and convection.
This heating gives rise to buoyant body forces which
accelerate the fluid in the boundary layer at the plate
thus acting as a favourable pressure gradient. Near the
leading edge the boundary layer is formed chiefly by
the viscous retardation of the free stream whereas far
downstream the flow behaviour in the layer is governed
by the buoyancy forces.

The problem is formulated in terms of a characteristic
non-dimensional coordinate £ which measures the local
relative magnitude of viscous and buoyancy forces.
Once £ is established two series expansion solutions,
valid in different regions are obtained. To obtain each
such series solution a transformation is applied to the
governing boundary-layer equations. The nature of the
transformation is dictated by the anticipation that
near the leading edge the buoyancy forces simply
provide a modification to a basically forced convection
flow whereas downstream the presence of the free
stream is considered as a perturbation on the free
convection solution. The asymptotic expansion down-
stream must be approached with caution in the light
of a fundamental difficulty outlined by Stewartson [1]
and exemplified by Merkin [2] whilst discussing a
previous perturbed free convection solution given by
Szewczyk [3]. It is not expected that the regions of
validity of the series solutions will overlap. These
solutions are therefore supplemented by an accurate
numerical solution of the problem. The numerical
method is an adaptation of a method used by Terrill
{4] and Merkin [2] which starts with velocity and
temperature profiles at the leading edge and proceeds,
step-by-step, to calculate profiles downstream.

Although the methods given in this paper are general
ones results are only presented for the case when the
Prandtl number ¢ =1. This reflects the time and
expense required to perform one full numerical solu-
tion. Besides providing precise information for this
case, an objective of the work must therefore be to
provide an opportunity of assessing the merits of the
series solutions which can be obtained relatively
speedily and economically.

2. THE PROBLEM

The situation under discussion is illustrated in Fig. 1.
In a Cartesian coordinate system a semi-infinite plate
occupies the region y = 0,x > 0 so that x measures
distance along the plate from a fixed horizontal leading
edge x = 0 and y is measured normally outwards from
the plate. Incident upon the plate and in the direction
of increasing x is an isothermal uniform stream of
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-k (dT/ dy)=q

FiG. 1.

velocity U and temperature Ty. Favourable buoyancy
forces arise as a result of a uniform surface heat flux ¢
from the plate.

If it is assumed that

U? AT
Kk ]
a Ty

heating due to viscous dissipation can be neglected
and the fluid considered incompressible, so that
changes in density are significant only in producing
buoyancy forces. v and k can then be taken as constant
and the governing boundary-layer equations expressing
conservation of mass, momentum and energy, become

fu ov
oo — = () 1
6x+Py @
du  du *u

lia+vé;=g§(T—To)+Vé? (2}

T 8T &T
e e P T e 3
uax«way kﬁyz 3)

Equations (1)-(3) are to be solved subject to the
boundary conditions

er
u=p=0, a9 on y=0
ay
u—U, T—>T, as y—-»x @
H=U, TZTQ at x =0,

A dimensional analysis of equations (1}—(3} is instru-
mental in obtaining as non-dimensional characteristic
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length scale
[22GrNu?\'7?

(2P
Tk ) T

“\5mus )

—
h
~—

which reflects the local relative importance of viscous
which reflects the local relat importance ©f viscous

and buoyancy forces. The numerical factors are intro-
duced for convenience. Transformations associated
with flow near the leading edge and downstream lead
to series expansion solutions in terms of ¢*? and
£7315 respectively. The unifying role of the coordinate
¢ is particularly in evidence in the numerical solution
when, at ¢ =1, profiles of velocity and temperature,
obtained from an integration of the leading edge form
of governing equations, are used as initial profiles for
the integration of the asymptotic form of these same

equations.

3. NEAR THE LEADING EDGE—SMALL ¢
In this vicinity there is little opportunity for heat
from the plate to be taken into the fluid, and the
boundary layer is formed mainly by the retardation of
the free stream U by viscosity. This suggests the follow-
ing transformations

Y = (U f(En)

el /7\7\"\ 1/2

()

and £ is as in (5) above.
The boundary-fayer equations become

3 2 2 a2
_a_;f,+f§_f__5§3 v+2£55f6l_c’1 Gfl (6)
o’ 7 on* Lon a¢ onozonf
2 ~ a
LU NS (1 ) G
e R o6& on el

of o0
f= é‘? =0; ™ 1 on =0
8
of (8)
— =1 0-0 as p->
n
Solution of equations (6 d (7) are sought by
expanding f and 0 in series in é in the form
SEn = folm+ 53’21"1 m+&fHm+...

1n

B, n) = Bo(n) + E3726, () + E26,20) + ..

which, when substituted in equations (6) and (7) and
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equating powers of £¥/2, yield

o(1) o' +fofo =
d
*%‘*’fo()b_oof(; =0 (l = df)
]
0 1”'+f 0+ 4,5 =33 i =500 =0
)
- 0’{ +0, fo+4f,0,—0,f —40,f5 =0
o
o) 2+ f1fo+ e —6fa f2— 50,
__ LIl AL £
JJ Y1J1
+ 03 fo+71206—1£300— 702
= 40, f{ 40 f,
with boundary conditions
LN LMY £ 0N N
Jo\V) = 1) = J2lY) v
fo®) = fi0)= 30 =..=0
OA0Y = 1- OM=0M= =0 (1m
vowwy 1y Vi) vy g vy
foleo)y=1;  fllo) = file0)=...=0
0o(00) = 0;(c0) = O5(e0) = ... = 0.

The forced convection nature of the flow in this region
is apparent in the O(1) system of equations for fg, 8,.
Here f; is clearly the Blasius solution for isothermal
incompressible viscous flow past a flat plate. The overall
system of equations (9) is not amenable to analytic
solutlon and solutions to these two-point boundary
value problems must be obtained numerically. Solution
is accomplished once values of ;"(0), 6,(0) (i = 0,1,2,...)
are established which enable boundary conditions at
infinity to be satisfied when the equations are integrated
outwards from n = 0. Such solutions are readily ob-
tained and are presented in the results.

4. DOWNSTREAM—LARGE ¢

Away from the leading edge buoyancy forces become
increasingly important until far downstream the flow
will be predominantly one of free convection perturbed
by the presence of the free stream. In view of the
solution of Sparrow and Gregg [5] for the purely free
convection flow under the constant heat flux specifica-
tion the following transformations are invoked

¥ = Cox*5(E,h)

—4x x!/ _
T-T, kC, 0(z. %)
where
_Cu
"”xus
and

M

(2 5. kv)
(2454gﬂqv3>”5
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The boundary-layer equations (2) and (3) become
~3 f ‘12]7 af 2 _

8 A
oY e ogr) 7

are
+105{ _Zfi—ﬁa} 0 (11

13%0 00 __¢ oG of  of ¢o
/‘(——2 i + 1085 l—ii =0 (12)
o on Pn onog on g
with boundary conditions
0 ]
=6‘)f_=0; (A_ on =0
on on
. (13)
g 1“3/5, -0 as #7-cc.
a5

The perturbation nature of the free stream presence
is revealed in the behaviour of df/éf as if— oo, To
accommodate this boundary condition sertes solutions
of (11) and (12) are sought in the form

FE M = foll)+ E3BRH6E) + & N0 +
(&, 7) = Oo(q) + &30 + £ 0,0 +

These expansions lead to the following system of
equations

o(1) Ty 8T Ty — 67 —By = 0

LBt -2mi=o (= di>
O™ fI"+86 fi + 251 = 2fs fi - 0, = "

75;’+8f0(7;+2f1(75+4§1f(;—2(?0f1’ =0 "
0(&™ %) /”"‘8/’0772 45 fr—0, = —2f'

- 5’2' + 8,0y — 401, — 20, f, + 108, f5

= ”Zfla/l“’fgl.fl’

to be solved subject to boundary conditions

fol0) = fi(0) = /2(0) =

f50) = fi0) = f;00)=...=0

0o0)=1; 01(0)=00)=...=0 (15)
foloo) =0;  fileo) =% fa(oo) =05

Jolc0) = ,(0)... = 0.

0(1) solutions of (14) coincide with those of Sparrow
and Gregg [5] and describe the flow about a semi-
infinite flat plate at whose surface the heat flux is
constant.

In establishing the correct form for the series
expansion of / and # account must be taken of those
complementary functions which identically satisfy the
boundary conditions at zero and infinity and which
are exponentially small when 7 is large. A combination

of them can be added to the solution which will still
satisfy all the conditions imposed. It has been shown
by Stewartson [1] that the numerical constant multi-
plying each such complementary function must in some
way be associated with the conditions satisfied by the
stream function upstream. Moreover, if as often
happens, such a complementary function occurs at a
stage for which a particular integral is required then
the condition of exponential decay cannot be fulfilled
unless an additional term, consisting of the comple-

“mentary function multiplied by a log or log-log term,

depending on the case, is added. The numerical factor
in this term is to be determined by the condition that
the particular integral be exponentially small when 4
is large.

The occurrence of such complementary functions
can be investigated as follows. Setting

S = fo+ E"F.00
0 Do(M) + £ "H, (1)
and substituting in equations (11) and (12) reduces the

problem to that of ascertaining those values of n for
which the system of equations

F'+-8foF +(10n-12) foF,
+(8-10n) fgF,—H,=0 (16)

1 _ —
-~ H +8fH, + (10n-2) fy H,

’ +(8-10m)8,F,—28,F. =0 (17)
has a non-trivial solution subject to the boundary
condition

F(0) = F,(0) = 0;

H,(0) =
F(x0)=0; H,

H(xc)=0

where the decay of F,, H,as § — o is to be exponential
and f,(17), 0,(7) are the O(1) solutions of (14).

A full 1nvest1gat10n of this problem is beyond the
scope of this paper although Stewartson’s [6] com-
ments on leading edge shift lead us to suspect a
solution for n = + 1. In fact a solution of (16) and (17)
which satisfies the boundary conditions proves to be

F, = l‘[“:fo“’ifo']

H, = u[0o—iill]
where u is as yet an undetermined constant. Since ex-
pansion solutions in powers of (¢7%°) have been
assumed the above eigenvalue solutlon is not in fact
the solution of the homogeneous part of any of the
systems of equations in (14). Consequently the intro-
duction of a log term in respect of this complementary
function solution is not appropriate. Although the
solution has no part to play in ensuring the exponential
decay of a particular integral it remains true that
arbitrary multiplies of it could be added to the full

{13)
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solution without contravening the boundary conditions
other than perhaps upstream. In general such contribu-
tion to the asymptotic solution remains arbitrary
although associated with some overall property of the
flow. Estimates of such contributions can be made by
comparing the asymptotic solution with a precise
numerical solution and indeed at first sight this would
seem to be the opportunity afforded by this investi-
gation. However in this particular case the precise
contribution of the complementary function F, H can
be demonstrated to be identically zero, i.e. u = 0. The
integrated form of the energy equation yields

0
ie. 7 . (19)
= dyl|=x2
dxl:_[ 0 ur y] kk
In terms of f , 0, £ and 7 this reduces to
6f 1
dé ¢ 0% 9= 1o,
and thus (20

g i L
T

If, at this stage, a contribution to the asymptotic
solution is assumed and expansions for f, § read

JE D = Jo+E MM+ EF@+. ..
B, i) = Bl + E731°0,(7) + & Hy(7) +

the implications of (20) are that

* o _ 1
oQ) Jo GofodVI = ‘m (1)
0(E~3%) B, fo+ 0o /i) dj = 22)
o™ (BoF; +H, f5)dij =0 (23)
0

Introducing the representation (18) into (23) we have
|0~ 17501+ Ui 00
0
@ , _ 3] _ d ) _
=4{[A%ﬁdn—uf 147 (feBo)dr
0 n

-s;{ JiBodi= 0

which, in view of (21), implies u = 0.

It is concluded that the solution of the systems of
equations (14) are therefore appropriate and numerical
solutions of these two-point boundary value problems
have been obtained. Details appear in the results.
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5. NUMERICAL SOLUTION

A step-by-step method of numerical solution was
employed whose accuracy is limited only by the time
and space required to perform the calculations on the
computer. Derivatives in the ¢-direction are replaced
by differences and all other quantities by averages.
The method then establishes, by an iterative scheme,
velocity and temperature profiles at a station £,, down-
stream of the station ¢, at which profiles are known.
For starting the solution, the transformed equations
(6) and (7) are appropriate and initial profiles are taken
as those similarity solutions of the reduced form of
equations (6) and (7), i.e. fg, 0o. Since the iteration
process fails to converge at £ =0 the integration is
initiated at ¢; = 5 x 107 % with an initial step length
of 5 x 107 °. Subsequent step lengths are duly enlarged
when the maximum number of iterations needed in
going from &; to &, is less than four. Downstream
the transformed equations (11) and (12) are appropriate.
The changeover is most conveniently invoked at & = 1,
where # = 7. Thus profiles of temperature and velocity
obtained from the integration of the transformed
equations (6) and (7) at £ = 1 are used as initial profiles
for the integration, commencing at & = 1, of equations
(11yand (12).

Errors arise from using finite differences in both the
¢ and #-directions. The size of truncation errors in the
n-direction can be checked using finite difference
estimates whilst errors in the ¢-direction are controlled
by prescribing a maximum modulus of deviation
between a one-step and a two-step solution between
stations ¢£; and ¢&,. Profiles obtained from integrating
at the half intervals are the ones used as initial profiles
for the next full step of the solution. The level of
accuracy achieved is governed solely by the limitations
on available storage space. In this instance integrations
in the n-direction were carried out with

1,7 = 0-1{0-1)6-4

and a maximum modulus of deviation of 5 x 1075,
An overall accuracy of at least three decimal places is
therefore anticipated.

RESULTS (s =1)
Series solutions
Numerical solution of equation (9) subject to bound-
ary conditions (10) have been established and appro-
priate initial values are presented in Table 1.

Table 1

b 0;
i=0 046960 —1:54064
i=1 5:14956 2-68850
i=2 —19-23852 —20-89185
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F1G. 2. Velocity functions near the leading edge.

F1G. 3. Temperature functions near the leading edge,

Velocity and temperature profiles associated with
the solutions are illustrated in Figs. 2 and 3. We are
now able to calculate, in terms of the series expansions,
the values of various flow parameters near the leading
edge. namely

(i) the skin friction coeflicient

522 \VS /oy ;
tW:(U423 353 2) (é“’) 24)
98 V=0

(i) the heat-transfer coefficient

0= 5% 1 (0T
zsgzﬁzqz AT ('1y y=0

{it1) the momentum thickness

2392,82(12 e u i
5 = — - [ ] y
=(ebe) [ o(-5)o o

{iv) the temperature thickness

5 PR\ e (T, )
To\sHAy? , U\TAT )W

In terros of the leading edge variables and solutions
associated with Table 1 we have

(25)

(27)

7w =287 (fy)y=0
(28 112(0-46960 + 5149565312
—19-23852&% +..) (28)

i

ey
¢= (O)y=0

(28)"M2(1-54064 — 2-68850£%2

it

+20-891855% + .07 (29)
* A )
Oy = (25)”""{ (.,f(l -{> dn
o n én
= (2E31210-46960 —~ 0-58631£42
+0-74780E +...} (30)
< *of 0
Or=1(2 “ZJ S =
R N
= (2£)1/2{0-32456 + 0-56524°72
—0:927478 + ..} (31

where Euler-Maclaurin formulae have been used in
evaluating integrals appearing in J, and &,.
Numerical solutions of equations (14) subject to
boundary conditions (15) have also been obtained and
appropriate initial values appear in Table 2.

Table 2

i 0
i=0 0-54715 -~ 1-18168
i=1 — 001742 013634
i=2 002486 0-00995
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0-25

0-20

015

005

F1G. 5. Temperature functions downstream.

Again velocity and temperature profits associated
with these solutions have been illustrated and appear
in Figs. 4 and 5. From the series expansions the values
of the flow parameters in terms of the downstream
variables and the solutions associated with Table 2 yield

2
t,=5x 2"1/25215<§£)
o7 Ji-0

= 5 x 27 M2ERS(0-54715 - 0017428313
+0-024862%° + ) (32)

2—1/25~1!5

0= o
{0)i =0
=27 V2E~1/5(1-18168 —0-13634£ 33
—0-00995¢7%5 + .. )1 (33)

8, = 21/25257/5L %(S;m “5{}) dif

= 2U252ETS(_0-02751 +0-02051&£ 35
+0-010087%5+..) (34)

»of 0
T 04

5 =21/25€‘*4/5J\ -
! o ¥ (0)-0
= 2U25£95(0-08463 4+ 0-00977¢ 315
—0-0017787%5 ).

(35)

Series expansion estimates of the flow parameters
have been calculated from (36) to (43) and are included
as the dotted line plots in Figs. 6-9.

{00

oGt ot i i 100
3
F1G. 6. Skin friction coefficient, ———— series
solutions; numerical solutions.
{ols}
10k

[«]
|
. ] ! 1
%o o1 " ) 00
3
F1G. 7. Heat-transfer coefficient. ~w— series solutions;

numerical solutions.
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Fi1G. 8. Momentum thickness. ————— series solutions;
numerical solutions.

12
&
o
~
N
2

o l | | 1

] 2 3 4 5
3

FiG. 10. Velocity profiles from numerical solution.

Numerical solution

Results of the full numerical integration of the
boundary-layer equations are presented in Tables 3
and 4 in floating point notation. The Tables deal
respectively with the two distinct regimes of integration
0< é<land 1< & < oo and list values of the various
flow parameters (32)—(38). These results are represented
as full line plots in Figs. 6-9. Additional illustrative
information is presented in Figs. 10 and 11 where
velocity profiles at various stations along the plate are
graphed.

100

3y
i
o1
ool
¢
Fi1G. 9. Temperature thickness. —-——— series solutions;
numerical solutions.
020
‘e
®
~
I
2e]

=3

Fi1G. 11. Velocity profiles from numerical solution.

DISCUSSION

A detailed investigation of the title problem has
been outlined and it remains to note the high degree
of agreement between the three-term series representa-
tions and the exact numerical solutions for Prandtl
number unity as illustrated in Figs. 6-9. In all the
cases of skin friction, heat transfer, momentum thick-
ness and temperature thickness, estimates overlap over
almost the whole range of values of & Moreover the
points at which series representations diverge from the
correct solutions are such as to give some confidence
that straightforward extrapolations linking these series
representations may well be sufficient for practical
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Table 3
é T Q (52 5-;
0-00001 1:05002 1-450a2 2:1000 — 3 14500 —3
0-00004 52511 7-254a1 41970 —3 2901a—3
0-00016 2:626a1 3627al 839303 5-801o~3
0-00064 1-313a1 1-813a1 16785 —2 1160 —2
000256 65730 9-069a0 3-356x—2 2:321n~2
001024 331940 4-541a0 67050 —2 4-649¢ — 2
002 2-41940 3-26000 9-3500—2 65170~2
003 202350 2:672a0 11420 —1 801202
0-04 1-800a0 232440 1314a—1 92930 —2
005 1-65820 2:0890 14630 —1 10440~ 1
0-06 1-56000 191720 1596041 11500 —1
007 149120 178400 17160 —1 1249y — 1
0-08 1-44120 1-678a0 1825a—1 13420~ 1
009 140340 159120 19252 —1 14320 ~1
010 1-375a0 15190 201821 1-518a 1
012 133920 1-402x0 21840 —1 16830~ 1
014 1-32000 131400 2:329 - 1 18390 ~1
016 1-31320 124320 2:4550— 1 1989y ~ 1
018 13120 1+185a0 2-5660 —1 2134a~1
020 131720 113720 26630 —1 22740~ 1
024 133720 10600 2-8222~1 2-5450~1
028 136440 1-002%0 2939 —1 2-8060 — 1
032 139520 9-551a~1 3021a—1 305701
0-36 1-428a0 9169~ 1 30720 —1 33020~ 1
040 146220 8-847¢ 1 3005x—1 384101
048 1-531a0 833501 3067¢—1 40030 —1
0-56 1-5980 7939 -1 29530 —1 4-450x -1
064 1-66420 762101 276221 48830 —1
072 172740 7-3580 1 2-504¢—1 5-304e—1
0-80 178840 71352 ~1 21830~ 1 57160~ 1
0-88 1-84720 6-946q — 1 18070 —1 6-1200—1
096 1-90360 677601 13770 —1 65160 —1
100 193120 66990 — 1 11440 —1 6711g—1
Table 4
¢ Tw Q 4, 2%
1-0 19310 6-6990 — 1 1440 —1 6711x—1
12 210760 63762 —1 19000 -2 766701
1-5 229100 60140 —1 —2:6680—1 904101
20 2:55940 55932 —1 —7-85%x—1 1112100
30 3-00020 50700 —1 - 214040 1-52500
40 336400 474101 — 382740 190240
50 367720 45060 —1 — 578600 2:25940
100 485700 3867a—1 —1-863al 3-87840
150 57170 3-5450—1 — 3523l 5-3330
200 641800 333601 —5-470al 669120
270 724100 3133a—1 —8-588x1 848300
360 812840 2951a—1 —1-316a2 1-066u1
480 12300 2:780a— 1 —2007x2 13391
680 10491 25890 — 1 —3329a2 176601
100-0 122541 2392a-1 — 580602 2-4000f
1500 144541 2:203a—1t - 1-03843 331541
2500 17681 1-986a — 1 —2:148x3 4-982x1
450:0 2-238x1 176401 —493%923 79641
800-0 2-818al 157te—1 — 111304 12612
1500-0 3-624al 1-385a0— 1 —2:696a4 2-08402
Series 360401 1-388a—1 —2:694a4 208242
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/VRe,
o
T

N
ol | I L | |
[eZe]] [oF] 1-0 10 100 1000
3
FiG. 12.
purposes. Also noteworthy is the level of agreement REFERENCES

between a local similarity analysis and the results of
this investigation. In [7] a local similarity analysis
was examined and estimates for local Nusselt number

presented, where * refers to the variables of that paper.
In Fig. 12 the equivalent exact quantity has been plotted
and it is impossible to differentiate graphically the
discrepancies between the results of this work and the
earlier results over the appropriate range of £. This is
an interesting result and further investigations of the
correlation between local similarity, series and exact
estimates for more extreme values of Prandtl number
may be profitable.
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ECOULEMENT LIBRE UNIFORME SUR UNE PLAQUE PLANE VERTICALE
SEMI-INFINIE AVEC FLUX THERMIQUE PARIETAL UNIFORME

Résumé—On étudie l'effet des forces d’Archiméde sur I'écoulement de couche limite contre une plaque
plane verticale semi-infinie. Ces forces sont favorables dans le cas d’un flux pariétal uniforme de chaleur
et on examine leur intéraction avec 'écoulement de couche limite. Deux solutions séries sont obtenues,
I'une valable prés du bord d’attaque et 'autre en aval. Une méthode numérique précise permet de
décrire I'écoulement lorsque les séries ne sont pas acceptables. La comparaison des résultats conduit a une
certaine confiance en faveur des solutions séries pour un nombre de Prandtl de 'ordre de l'unité.

DIE STETIGE STROMUNG ENTLANG EINER HALBUNENDLICHEN, SENKRECHTEN,
EBENEN PLATTE MIT GLEICHFORMIGEM WARMESTROM DURCH DIE OBERFLACHE

Zusammenfassung— Untersucht wird der Einflull von Auftriebskriften auf die Grenzschichtstromung an

einer senkrechten, ebenen Platte. Die von einem gleichmiBigen Warmestrom aus der Plattenoberflache

verursachten Auftricbskrifte beeinflussen den Wirmeiibertragungsvorgang giinstig. Thre Wechselwirkung

mit der Grenzschicht einer stetigen Stromung wird behandelt. Es werden zwei Losungen in Reihen-

darstellung angegeben. Von diesen gilt eine nahe der Anstromkante und die andere stromabwirts. Eine

genaue numerische Methode wird dort angewandt, wo die Reihenldsungen nicht gelten. Ein Vergleich der
Ergebnisse berechtigt zu einigem Vertrauen zu den Reihenlosungen fiir Pr = 1.
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OB OIHOPOOHOM HOTOKE HA/l ITOJIVBECKOHEYHOH BEPTHKAJILHOM
TIJIACTHHOA ITPU HAJIMYWM PABHOMEPHOI'O TETUIOBOI'O ITOTOKA
HA MOBEPXHOCTH
Anmnotanns — VIccIenyeTcs BIMAHHE CHNbI ApXHMela Ha TeueHHe B MOTPAaHHYHOM cloe BOmMMIM
110;TyGECKOHEYHON BEpTHKAILHON INaCTHHLI, ApPXHMENOBBl CHNbI, BO3HHKAIOWIME B De3yJbTaTe
TIPHITOXKEHHOTO K INACTHHE OHOPOAHOTO TEIIOBOTO MOTOKA, ABAAIOTCS 3HAYHTEILHEIMM ; H3Y4aeTCs
BO3ACHCTBHE ITHX CHII HA OxHopolsol xunxocti. [TonydeHs! pelneHus B BHAE PAIOB UK HepenHel
KPOMKH ¥ 21151 06aCTH BHM3 110 MOTOKY. J{ist ONHCAHNS NOTOKA B OO/IAaCTH, TAS TIONYYEHHbIE DEIIEHUS
He SBIAIOTCA CNPaBenIHBbhIMY, HCUONAB3YETCH TOYHBIN yHcneHHb MeTon. TIpoBeleHHOe CpaBHEHHE
TIOKA3bIBAET AOCTOBEPHOCTH MONYHYEHHBIX pelueHuit B Buae panos nna yucna Hpanaras O(1).
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